$$ \bf e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \bf e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \cdots, \quad \bf e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} $$

<aside> 💡 Note that in 3-space, these would be orthonormal vectors $\bf e_1, \bf e_2, \bf e_3$

</aside>

<aside> 💡 Since the natural basis vectors satisfy the right-handed coordinate system, cross products will obey the right hand rule if restricted to right handed reference frames.

</aside>