Refer to pg. 40

<aside> 💡 An eigenvector of a general square matrix $M$ is a nonzero vector $\mathbf{x}$ which observes the following relationship (where the eigenvalue $\lambda$ is a scalar): $M\mathbf{x}=\lambda\mathbf{x}$

</aside>

$$ \det(\lambda I - M) = \lambda^n + \alpha_1\lambda^{n-1}+ \cdots + \alpha_{n-1}\lambda + \alpha_n=0 $$

<aside> 💡 Remember that this value of 1 corresponds to no change in the vector and obeys the equation $A\mathbf{e}=\mathbf{e}$ as explained above

</aside>

$$ \lambda^3-\lambda^2\text{tr}M+\lambda\operatorname{tr}(\operatorname{adj}M)-\det M=0 $$

<aside> 💡 From pg. 19, note that $\operatorname{tr}A$ is the trace of the square matrix $A$ and is equal to $\operatorname{tr}A=\sum_{i=1}^n{a_{ii}}$

</aside>

<aside> 💡 From pg. 20, note that $\operatorname{adj}A$ refers to the adjoint matrix of $A$

</aside>

$$ 0=\lambda^3-\lambda^2\operatorname{tr}A+\lambda\operatorname{tr}A-1=(\lambda-1)^2[\lambda^2+\lambda(1-\operatorname{tr}A)+1] $$