<aside> 💡 The above relation requires knowing the relation $(AB)^T=B^TA^T$
</aside>
$$ \mathbf{x}F^T M_F \mathbf{y}F = \mathbf{x}F^T D{GF}^T D{GF} M_F D{GF}^T D_{GF}\mathbf{y}_F = \mathbf{x}_G^T M_G \mathbf{y}_G $$
$$ M_G \equiv D_{GF}M_FD_{GF}^T $$
<aside> 💡 The above relation requires knowing the relation $(AB)^T=B^TA^T$
</aside>
<aside> 📢 The definition for $M_ G$ defines how matrices must transform under reference frame transformations otherwise the above relation will not hold.
</aside>