Reaction Wheels

Characteristics

pg. 148

$$ L^w_\text{drag} =\tau_v\omega^w-\tau_c\text{sign}(\omega^w) $$

Redundant Wheel Configurations

pg. 152

$$ \mathcal{W}_n=\begin{bmatrix}\vec{w_1} & \vec{w_2} & \dots & \vec{w_n}\end{bmatrix} $$

$$ \vec{L}_B^w=\mathcal{W_n}\begin{bmatrix}L_1^w & L_2^w & \dots L_n^w\end{bmatrix}^T=\mathcal{W_n}\vec{L}_W^w $$

$$ \vec{H}_B^w=\mathcal{W_n}\begin{bmatrix}H_1^w & H_2^w & \dots H_n^w\end{bmatrix}^T=\mathcal{W_n}\vec{H}_W^w $$